An Explicit Formula for the Genus 3 Agm

نویسنده

  • D. LEHAVI
چکیده

Given a smooth non-hyperelliptic curve C of genus 3 and a maximal isotropic subgroup (w.r.t. the Weil pairing) L ⊂ Jac(C)[2], there exists a smooth curve C′ s.t. Jac(C′) = Jac(C)/L. This construction is symmetric. i.e. if we start with C′ and the dual flag on it, we get C. A previous less explicit approach was taken by Donagi and Livné (see [DL]). The advantage of our construction is that it is explicit enough to describe the isomorphism H0(C,ΩC) = H 0(C′,ΩC′ ).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An explicit formula for the number of fuzzy subgroups of a finite abelian $p$-group\ of rank two

Ngcibi, Murali and Makamba [Fuzzy subgroups of rank two abelian$p$-group, Iranian J. of Fuzzy Systems {bf 7} (2010), 149-153]considered the number of fuzzy subgroups of a finite abelian$p$-group $mathbb{Z}_{p^m}times mathbb{Z}_{p^n}$ of rank two, andgave explicit formulas for the cases when $m$ is any positiveinteger and $n=1,2,3$. Even though their method can be used for thecases when $n=4,5,l...

متن کامل

Tutte polynomials of wheels via generating functions

We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.

متن کامل

An assessment of a semi analytical AG method for solving two-dimension nonlinear viscous flow

In this investigation, attempts have been made to solve two-dimension nonlinear viscous flow between slowly expanding or contracting walls with weak permeability by utilizing a semi analytical Akbari Ganji's Method (AGM). As regard to previous papers, solving of nonlinear equations is difficult and the results are not accurate. This new approach is emerged after comparing the achieved solutions...

متن کامل

An Explicit Formula for the Arithmetic-Geometric Mean in Genus 3

The arithmetic geometric mean algorithm for calculation of elliptic integrals of the first type was introduced by Gauss. The analog algorithm for Abelian integrals of genus 2 was introduced by Richelot (1837) and Humbert (1901). We present the analogous algorithm for Abelian integrals of genus 3.

متن کامل

A descent method for explicit computations on curves

‎It is shown that the knowledge of a surjective morphism $Xto Y$ of complex‎ ‎curves can be effectively used‎ ‎to make explicit calculations‎. ‎The method is demonstrated‎ ‎by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve ‎with period lattice $(1,tau)$‎, ‎the period matrix for the Jacobian of a family of genus-$2$ curves‎ ‎complementing the classi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001